Frontiers in Computer Science and Technology

Lecture 11

Al for Life Science – Selected Topics

Stan Z. Li

Outline

- 1. Introduction
- 2. Proteomics Models
- 3. Single-Cell Data Analysis
- 4. Some Future Directions

AI for Sciences

Optimization/ Decision Making Protein Folding and Design **Drug Design** and Synthesis

Protein Sequence – Structure – Function

Structure Prediction

 \rightarrow

Protein Structure

Function
Drug Design

Omics in Life Science and Biomedicine

Source: Wikipedia

Biological Processes and Data

Outline

- 1. Introduction
- 2. Proteomics Models
 - Proteomics Empowered by Protein Language Models
 - De Novo Protein Sequencing
- 3. Single-Cell Data Analysis
- 4. Some Future Directions

Proteomics Data Acquisition by MS Peptide Sequencing

Challenges in Protein Sequencing

- 1. Individual proteomics-based tasks are limited by small data and foundations are needed to
- 2. Current database search methods are unable to identify new proteins (dark matters in proteomics).
- 3. Current de novo sequencing methods perform poorly in identifying post-translational modifications (PTMs)
- 4. Current spectrum prediction methods are limited by the difference of fragmentation types or instrument settings.

Case: Al-based Thyroid Nodule Diagnosis

AI Analysis of Proteomic Abundance Matrix

MS Data from Protein Sequencing

Sun, et al. "Artificial intelligence defines protein-based classification of thyroid nodules", Cell Discovery 2022

11/57

AI Modeling

PLM & PPI-Empowered Proteomics Model

Protein Language Model Protein-Protein Interaction

Zang Z, et al. Boosting Unsupervised Contrastive Learning Using Diffusion-Based Data Augmentation From Scratch. ICML 2024

Performances on Cancer Diagnosis

Test on 3 Datasets

- 1. Mixed Cancer Datasets
- 2. Gastric Cancer Dataset
- 3. Thyroid Cancer Dataset

False Positive Rate

Methods	ACC (%)	AUC (%)	F1 (%)	P (%)	R(%)
SVM	75.2	77.5	75.0	75.3	75.1
lasso	75.1	77.4	74.9	75.2	75.0
DT	54.8	55.2	54.7	54.9	54.8
mlp	75.5	77.7	75.3	75.4	75.4
rf	75.1	77.4	74.9	75.2	75.0
Ir	75.3	77.6	75.1	75.3	75.2
nn	76.8	79.1	76.5	76.7	76.6
LSTM-one-hot	77.6	79.8	77.2	77.4	77.3
LSTM-w2v	77.5	79.7	77.1	77.3	77.2
Ours	80.7	85.0	79.1	79.3	89.1

aset
r Dat
ance
oid C
Thyr

Methods	ACC (%)	AUC (%)	F1 (%)	P (%)	R(%)
SVM	88.5	91.2	88.0	88.3	88.2
lasso	88.4	91.2	87.9	88.2	88.1
DT	60.1	59.0	60.0	60.2	60.0
mlp	88.7	91.4	88.4	88.6	88.5
rf	88.4	91.2	87.9	88.2	88.1
Ir	88.6	91.3	88.2	88.4	88.3
nn	90.5	93.2	90.2	90.4	90.3
LSTM-one-hot	90.6	90.1	90.2	90.4	89.3
LSTM-w2v	89.2	92.0	91.1	91.3	90.0
Ours	92.7	95.8	92.1	92.3	92.1

Gastric Cancer Dataset

14/12

Analog Comparison: Proteomics vs Structural Biology

Structural Biology

Foundation Model "AlphaFold2" for Proteomics?

effectively similar to AlphaFold2 for structural biology.

[1] Highly accurate protein structure prediction with AlphaFold (Nature 2021)[2] De Novo Peptide Sequencing with InstaNovo (Biorxiv 2023)

Contest year

onature

π -UniMass – Foundation Model for De Novo Peptide Sequencing

MPC: Mass Spectrum and Peptide Contrastive Loss

MPM: Mass Spectrum and Peptide Matching Loss

Autoregressive: Autoregressive Loss

De novo: De Novo Peptide Sequencing Loss

π -UniMass: Performance in De Novo Peptide Sequencing

Model	Training Data Num.	Human	Mouse	Yeast	Honeybee
CasaNovo [1]	30 M	0.446	0.483	0.599	0.493
InstaNovo [2]	20 M	0.431	0.436	0.581	0.477
π− UniMass	<mark>20 M</mark>	<mark>0.535</mark>	<mark>0.543</mark>	<mark>0.633</mark>	<mark>0.559</mark>

(Metric: peptide-level precision)

[1] De novo peptide sequencing with InstaNovo (Biorxiv 2023)[2] De Novo Mass Spectrometry Peptide Sequencing with a Transformer Model (ICML 2022)

π -UniMass: Performances in Spectrum Prediction

Models / Datasets	OG	OL	O2	OC
Prosit [1]	82.35%	81.05%	86.53%	82.17%
pDeep 3 [2]	84.06%	86.70%	91.46%	85.80%
<mark>π−UniMass</mark>	<mark>93.68%</mark>	<mark>94.17%</mark>	<mark>96.19%</mark>	<mark>90.52%</mark>

(Metric: The proportion of Pearson correlation coefficients greater than 0.9)

[1] Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning (Nature Methods, 2019)[2] pDeep3: Toward More Accurate Spectrum Prediction with Fast Few-Shot Learning (Anal. Chem., 2021)

Outline

- 1. Introduction
- 2. Proteomics Models
- 3. Single-Cell Data Analysis
 - High-Dimensional Data Analysis
 - Developmental/Evolutional Data Visualization
- 4. Some Future Directions

High-Dimensionality of Data

- DNA Sequences
- RNA Sequences
- Protein Sequences
- Images, Videos, Text, Audio

Face Image Data

- Image size 100x100 = 10⁴ pixels
- RGB image size 3x10⁴ pixels
- Dimensionality = 3x10⁴
- Pixel values in {0,...,255}
- #Possibility = $256^{30,000} \cong infinity$
- Only a tiny portion is of faces
- Face pattern lives in low dim subspace (Face Manifold)

100 pixels

100 pixels

Protein Data

- 20 amido acids
- Length L
- Total number 20^L
- Stable natural protein << 20^L

Forming "Protein Manifold"

Manifold Assumption

High-Dimensional Data: Images, Web pages, Gene sequences,

Dimension Reduction into Coordinate System of a Lower Dim

- For representation learning (feature extraction)
- For data visualization in 2D or 3D

Manifold Assumption: an interesting pattern in high

dimensional data resides on a low dimensional manifold

Manifold in Hi-D Data Space: 1D Curve in 3D Space

Conical Helix: $x=t^*cos(6t), y=t^*sin(6t), z=t$ $0 \le t \le 2\pi$

1D line segment

Latent variable t

Geodesic Distance on Manifolds

Flattening of Curved Manifolds

Swiss Roll:

x=φcos(φ), y=φsin(φ), z=ψ

 $1.5\pi \le \phi \le 4.5\pi$, $0 \le \psi \le 10$

Manifold: 2D rectangle

generated by two latent

variables φ, ψ

Euclidean Embedding: Transforming Curved Surfaces into Planes

Why Hyperbolic Embedding for Single-Cell Analysis

Characteristic of sc-Data

- Tree-like hierarchical structure
- High heterogeneity

Cellular Differentiation

High Heterogeneity

Why Hyperbolic Embedding

- Embedding trees distortion-free
- Exponential volume capacity

Euclidean Grid

Tree Nodes on Hyperbolic Grid

Visualization for C. Elegans Embryonic Data

30 / 68

Outline

- 1. Introduction
- 2. Proteomics Models
 - Proteomics Empowered by Protein Language Models
 - De Novo Protein Sequencing
- 3. Single-Cell Data Analysis
 - Dimension Reduction
 - Visualization
- 4. Some Future Directions

To Innovate Life Science Research

Large Language Models of Biology

(Multi-Modal)

Thank You