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AI for Sciences
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Omics in Life Science and Biomedicine
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Biological Processes and Data
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1. Introduction

2. Proteomics Models

• Proteomics Empowered by Protein Language Models

• De Novo Protein Sequencing

3. Single-Cell Data Analysis

4. Some Future Directions
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Proteomics Data Acquisition by MS Peptide Sequencing
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Challenges in Protein Sequencing 
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1. Individual proteomics-based tasks are limited by small 
data and foundations are needed to 

2. Current database search methods are unable to 
identify new proteins (dark matters in proteomics).

3. Current de novo sequencing methods perform poorly 
in identifying post-translational modifications (PTMs)

4. Current spectrum prediction methods are limited by 
the difference of fragmentation types or instrument 
settings.



Case: AI-based Thyroid Nodule Diagnosis
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AI Analysis of Proteomic Abundance Matrix
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Sun, et al. “Artificial intelligence defines protein-based classification of thyroid nodules”, Cell Discovery 2022

579 nodules

6
6

8
9

 p
e

p
ti

d
es

正常 良性结节 恶性结节

例甲状腺结节

从蛋白质表达水平上，恶性结节与良性结节有一定区分
度，但未完全区分开。

MS Data from Protein Sequencing 



AI Modeling
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PLM & PPI-Empowered Proteomics Model
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Zang Z, et al. Boosting Unsupervised Contrastive Learning Using Diffusion-Based Data Augmentation From Scratch. ICML 2024
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Performances on Cancer Diagnosis
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Test on 3 Datasets

1. Mixed Cancer Datasets

2. Gastric Cancer Dataset 

3. Thyroid Cancer Dataset 
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Peptide Sequencing

Spectrum Prediction

mass spectrum
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Foundation Model “AlphaFold2”for Proteomics？

Protein Structure Prediction Peptide Sequencing

[1] Highly accurate protein structure prediction with AlphaFold (Nature 2021)
[2] De Novo Peptide Sequencing with InstaNovo (Biorxiv 2023)

The SOTA accuracy for peptide sequencing is about 40%-60%. 
Achieving 80% accuracy would be a turning point for proteomics,
effectively similar to AlphaFold2 for structural biology.



𝝅-UniMass – Foundation Model for De Novo Peptide Sequencing 

Training Inference

MPC: Mass Spectrum and Peptide Contrastive Loss

MPM: Mass Spectrum and Peptide Matching Loss

Autoregressive: Autoregressive Loss

De novo: De Novo Peptide Sequencing Loss



𝝅-UniMass: Performance in De Novo Peptide Sequencing 

Model Training Data Num. Human Mouse Yeast Honeybee

CasaNovo ​ [1] 30 M 0.446 0.483 0.599 0.493

InstaNovo [2] 20 M 0.431 0.436 0.581 0.477

𝝅-UniMass 20 M 0.535 0.543 0.633 0.559

[1] De novo peptide sequencing with InstaNovo (Biorxiv 2023)

[2] De Novo Mass Spectrometry Peptide Sequencing with a Transformer Model (ICML 2022)

(Metric: peptide-level precision)



𝝅-UniMass: Performances in Spectrum Prediction

(Metric: The proportion of Pearson correlation coefficients greater than 0.9)

Models / Datasets OG OL O2 OC

Prosit [1] 82.35% 81.05% 86.53% 82.17%

pDeep 3 [2] 84.06% 86.70% 91.46% 85.80%

𝝅-UniMass 93.68% 94.17% 96.19% 90.52%

[1] Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning (Nature Methods, 2019)

[2] pDeep3: Toward More Accurate Spectrum Prediction with Fast Few-Shot Learning (Anal. Chem., 2021)



1. Introduction

2. Proteomics Models

3. Single-Cell Data Analysis

• High-Dimensional Data Analysis

• Developmental/Evolutional Data Visualization

4. Some Future Directions
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High-Dimensionality of Data

• DNA Sequences

• RNA Sequences

• Protein Sequences

• Images, Videos, Text, Audio
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Face Image  Data 

• Image size 100x100 = 104 pixels 

• RGB image size 3x104 pixels

• Dimensionality = 3x104 

• Pixel values in {0,…,255}

• #Possibility = 25630,000 ≅ infinity 

• Only a tiny portion is of faces

• Face pattern lives in low dim subspace (Face Manifold)

100 pixels

1
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0
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Protein Data

•20 amido acids

• Length L

• Total number 20L

• Stable natural protein << 20L

Forming “Protein Manifold” 
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Manifold Assumption

High-Dimensional Data: Images, Web pages, Gene sequences, ….

Dimension Reduction into Coordinate System of a Lower Dim

• For representation learning（feature extraction)

• For data visualization – in 2D or 3D

Manifold Assumption: an interesting pattern in high 

dimensional data resides on a low dimensional manifold
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Manifold in Hi-D Data Space: 1D Curve in 3D Space

Conical Helix: 

x=t*cos(6t), y=t*sin(6t), z=t

0 ≤ t ≤ 2π

1D line segment

Latent variable t
0 2π

Data 
Generation

Feature 
Extraction

t

3D Data Space

Perfect 1D Embedding Space
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Geodesic Distance on Manifolds
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Flattening of Curved Manifolds

Swiss Roll:

x=ϕcos(ϕ), y=ϕsin(ϕ), z=ψ 

1.5π ≤ ϕ ≤ 4.5π, 0 ≤ ψ ≤ 10

Manifold: 2D rectangle

generated by two latent

variables ϕ, ψ
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Nonlinear Transformation



Euclidean Embedding: Transforming Curved Surfaces into Planes
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yi= F (xi)

(Data Space)
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Why Hyperbolic Embedding for Single-Cell Analysis
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Euclidean Grid Tree Nodes
on Hyperbolic Grid

Characteristic of sc-Data

• Tree-like hierarchical structure

• High heterogeneity

Why Hyperbolic Embedding

• Embedding trees distortion-free

• Exponential volume capacity

High HeterogeneityCellular Differentiation



Visualization for C. Elegans Embryonic Data
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1. Introduction

2. Proteomics Models

• Proteomics Empowered by Protein Language Models

• De Novo Protein Sequencing

3. Single-Cell Data Analysis

• Dimension Reduction

• Visualization

4. Some Future Directions
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To Innovate Life Science Research
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Large Language Models of Biology

Bio-TokenizerBio-Data

（ Multi-Modal）

Bio-LLMBio-Tokens
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Thank You
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